Ни для кого не секрет, что в наше время, основным полем деятельности для производительной видеокарты являются – 3D игры, плавное проигрывание видео (HD), работа в профессиональных 3D\2D и видео редакторах. Остальные, повседневные задачи можно без проблем выполнять и на встроенных  в процессор или чипсет видеокартах. С недавнего времени, для видеокарты расширили поле деятельности, в виде многопоточных вычислений, которые работают гораздо быстрее на параллельной архитектуре видеокарт, чем на процессорах.

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видео-чипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видео-чипа, установленного на плате RADEON X1900 XTX равна 650 МГц, а точно такой же чип на RADEON X1900 XT работает на частоте в 625 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество различных исполнительных блоков, их характеристики и т.п.

В последнее время участились случаи, когда тактовая частота для отдельных блоков GPU отличается от частоты работы всего остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Из последних примеров можно назвать семейство GeForce 8800 от NVIDIA, видеочип модели GTS работает на частоте 512 МГц, но универсальные шейдерные блоки тактуются на значительно более высокой частоте — 1200 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиксельный филлрейт у GeForce 7900 GTX равен 650 (частота чипа) * 16 (количество блоков ROP) = 10400 мегапикселей в секунду, а текстурный — 650 * 24 (кол-во блоков текстурирования) = 15600 мегатекселей/с. Чем больше первое число – тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе – тем быстрее производится выборка текстурных данных. Оба параметра важны для современных игр, но они должны быть сбалансированы. Именно поэтому количество блоков ROP в чипах семейства G7x, на которых построено семейство GeForce 7, меньше количества текстурных и пиксельных блоков.

Количество блоков пиксельных шейдеров (или пиксельных процессоров)

Пиксельные процессоры — это одни из главных блоков видеочипа, которые выполняют специальные программы, известные также как пиксельные шейдеры. По числу блоков пиксельных шейдеров и их частоте можно сравнивать шейдерную производительность разных видеокарт. Так как большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров (см. технологические обзоры игр), то количество этих блоков очень важно! Если одна модель видеокарты основана на GPU с 8 блоками пиксельных шейдеров, а другая из той же линейки — 16 блоками, то при прочих равных вторая будет вдвое быстрее обрабатывать пиксельные программы, и в целом будет производительнее. Но на основании одного лишь количества блоков делать однозначные выводы нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Чисто по этим цифрам прямо можно сравнивать чипы только в пределах одной линейки одного производителя: AMD(ATI) или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх.

Количество блоков вершинных шейдеров (или вершинных процессоров)

Аналогично предыдущему пункту, эти блоки выполняют программы шейдеров, но уже вершинных. Данная характеристика важна для некоторых игр, но не так явно, как предыдущая, так как даже современными играми блоки вершинных шейдеров почти никогда не бывают загружены даже наполовину. И, так как производители балансируют количество разных блоков, не позволяя возникнуть большому перекосу в распределении сил, количеством вершинных процессоров при выборе видеокарты вполне можно пренебречь, учитывая их только при прочих равных характеристиках.

Количество унифицированных шейдерных блоков (или универсальных процессоров)

Унифицированные шейдерные блоки объединяют два типа перечисленных выше блоков, они могут исполнять как вершинные, так и пиксельные программы (а также геометрические, которые появились в DirectX 10). Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI. А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились не так давно, с появлением плат NVIDIA GeForce 8800. И, похоже, что все DirectX 10 совместимые видеочипы будут основаны на подобной унифицированной архитектуре. Унификация блоков шейдеров значит, что код разных шейдерных программ (вершинных, пиксельных и геометрических) универсален, и соответствующие унифицированные процессоры могут выполнить любые программы из вышеперечисленных. Соответственно, в новых архитектурах число пиксельных, вершинных и геометрических шейдерных блоков как бы сливается в одно число — количество универсальных процессоров.

Блоки текстурирования (TMU)

Эти блоки работают совместно с шейдерными процессорами всех указанных типов, ими осуществляется выборка и фильтрация текстурных данных, необходимых для построения сцены. Число текстурных блоков в видеочипе определяет текстурную производительность, скорость выборки из текстур. И хотя в последнее время большая часть расчетов осуществляется блоками шейдеров, нагрузка на блоки TMU до сих пор довольно велика, и с учетом упора некоторых игр в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность являются одними из важнейших параметров видеочипов. Особое влияние этот параметр оказывает на скорость при использовании трилинейной и анизотропной фильтраций, требующих дополнительных текстурных выборок.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времен. И хотя в последнее время её значение несколько снизилось, еще попадаются случаи, когда производительность приложений сильно зависит от скорости и количества блоков ROP (см. технологические обзоры игр). Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Нужно еще раз отметить, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Компания ATI первой применила архитектуру, в которой количество блоков пиксельных шейдеров было в разы больше числа блоков текстурирования. Это было сделано немного преждевременно, на наш взгляд, но в некоторых приложениях пиксельные блоки используются более активно, чем остальные и для таких приложений подобное решение будет неплохим вариантом, не говоря уже о будущем. Также, в предпоследней архитектуре AMD(ATI) нет отдельных пиксельных конвейеров, пиксельные процессоры не «привязаны» к блокам TMU. Впрочем, у NVIDIA в GeForce 8800 получилось еще сложнее…

Рассмотрим ситуацию на примере видеокарт GeForce 7900 GT и GeForce 7900 GS. Обе они имеют одинаковые рабочие частоты, интерфейс памяти и даже одинаковый видеочип. Но модификация 7900 GS использует GPU с 20 активными блоками пиксельных шейдеров и текстурных блоков, а видеокарта 7900 GT — по 24 блока каждого типа. Рассмотрим разницу в производительности этих двух решений в игре Prey:

Главными игроками на рынке графических ускорителей являются корпорации AMD и NVidia.

Тут всё понятно, как и во многих секторах рынков, дуополия. Как Pepsi и CocaCola, как PS3 и Xbox 360, как Intel и AMD в конце концов. С недавнего времени, компании выпускают свои продукты поочерёдно. Затем чтобы и одной было хорошо и второй. Сначала AMD выпускает флагмана линейки, затем месяца через два-три, более мощного флагмана выпускает NVidia. Сначала покупаются карты от AMD, как самые мощные, затем после выхода карт NVidia, купившие их, снова идут в магазин, за ещё лучшим продуктом. Практически то же самое происходит и со средним и бюджетным рынком. Только разброс по увеличенной производительности относительно конкурента здесь выше, так как чтобы заинтересовать более экономного потребителя, требуется нечто большее, чем шанс обладать лучшей видеокартой, как это происходит в секторе флагманов.

Инженеры AMD, не задумываясь режут половину пиксельных процессоров, шину памяти и часть ROP’s поколению карт, из сегмента на класс ниже. К примеру Radeon HD5870 имеет 1600пп, шину 256bit, а в 5770, всего этого осталось ровно половина –800, и шина памяти 128bit. Такая же ситуация продолжается и до самых бюджетных видеокарт. Так что, всегда предпочтительнее будет приобрести более слабую видеокарту из 58** серии, чем самую старшую из серии 57**.

У инженеров NVidia, не много иной подход. Плавно, обрезается шина памяти, универсальные конвейеры, ROP’s, пиксельные конвейеры. Но так же и снижаются частоты, которые при должной системе охлаждения, можно немного компенсировать разгоном. Немного странно, что не наоборот, как это делает AMD, повышая частоты на картах с обрезанным количеством исполнительных элементов.

Подход AMD более выгоден производителю, подход NVidia – покупателю.

Надеемся, с этими знаниями, вы сможете в соответствии с вашими требованиями, выбрать видеокарту.

Удачного вам выбора!